Contents 1/2014

Editorial
Changes Happen Faster Now; P. R. Taylor; Canada

Special Topic: Spain

Scientific Papers*
Introduction: Recent Structures and Research in Spain; N. P. Hoş, Switzerland; M. Dolores G. Pulido, J. Sobrino; Spain
An Experimental Analysis of the Evolution of Dynamic Parameters of a Long-Span Metal Arch Bridge; J. A. López, M. A. Astiz; Spain
Vortex-Induced Vibration on Cross Sections in Tandem Arrangement; A. S. Corriolos; Spain, Guido Morgenbichl; Germany
Analysis and Control of Cable-Stayed Bridges Subject to Seismic Action; A. Camara; UK, M. A. Astiz; Spain
Cyclic Bond Testing of Steel Bars in High-Performance Underwater Concrete; H. Bernardo, M. A. Vicente, D. C. González, J. F. Martínez; Spain

Technical Reports
Expansion of Madrid Stadium: Foundation and Grandstands; J. Martínez-Calzón, J. Gómez-Hermoso, G. L. de Guevara, D. Rodríguez-Muñoz, F. Rodríguez-Ballestros, L. Rubín-Fierro; Spain
The New Barcelona Design Centre; R. L. Acero, P. G. Rodríguez; Spain
Oriona Zero Building; J. M. Calzón, G. L. de Guevara, D. R. Muñoz, P. Baraltola, M. Palacios; Spain
Intempo: A High-Slender 180 m Building; E. G. de Tejado Espejada, F. R. Tezora; Spain
Extension of Euskalduna Conference Centre and Concert Hall: A Contemporary Application of Irregular Reciprocals Frames; A. B. Lorenz, D. G. Menéndez; Spain
New Courthouse at El Ejido; P. Tanner, J. L. Bellod; Spain
Sagrada Familia’s Crypt: Reinforcement for the Existing Foundations; C. Buxadé; Spain
Innovations in Execution: El Puente de Santolasa Dam; M. Cabeza, J. Gracia, B. Roldán; Spain
Construction Set: Structural Concept for Joaquín Sorolla Railway Station in Valencia; J. Bernabeu; Spain
Arganzuela Helix Footbridge; C. Castañón, A. Serrano, J. M. Calzón; Spain
Santander Bay’s Footbridge; M. J. Pantaleón, R. Revilla, P. Olazábal; Spain
First Ultra-High-Performance Fibre-Reinforced Concrete Footbridge in Spain; Design and Construction; J. A. Lopez, R. Serna, E. Cardona, H. Coll, I. Navarro-Gregori; Spain
Viaduct over Gudallarcor River and A-92 Highway; M. J. P. Prieto, G. O. Carreras, C. G. González, J. M. M. García, R. M. Ocaña; Spain
Teror Viaduct in Gran Canaria Island, Spain; J. A. Llombart, J. Revolé, J. Fernández; Spain
Construction of “Lo Passador”: A Self-Anchored Suspension Bridge over the Ebro River Delta; J. Srasny, Czech Republic, D. C. del Arco; Spain, P. Novotny, Czech Republic, I. Raventós; Spain
Las Llamas Bridge in Santander: Design and Construction of a Concrete Intermediate Arch Bridge; G. C. Miguel, M. S. Montesinos, J. I. Arenas, S. G. Soto; Spain
Archidona Viaduct: Composite Steel-Concrete Deck for a Long Railway Bridge; F. Milanes, E. B. Bujalance, J. L. M. Domínguez, J. M. Sáez; Spain
Talavera de la Reina Cable-Stayed Bridge; R. S. De Leon; Spain
Viaduct over River Ulla: An Outstanding Composite (Steel and Concrete) High-Speed Railway Viaduct; F. M. Maio, M. O. Cornejo, L. M. Rubio; Spain

SEI Discussion
A Bridge is More Than a Bridge: Aesthetics, Cost and Ethics in Bridge Design; J. A. Sobrino; Canada, B. Bugaid; UK

Eminent Structural Engineer
Eminent Structural Engineer: Javier Manetola, Bridge Builder; M. Aguiló; Spain

IABSE News
IABSE Conference Nara 2015 ‘Elegance in Structures’
IABSE Workshop ‘hybrid2014 by iabsconf’
Bart Snijder, Chair, SEI Editorial Board (2009–2013)
Niels Peter Hoş, Member, SEI Editorial Board (2005–2013)
IABSE Committee Membership
New Working Group ‘Construction History’ Has a Brilliant Start
General Assembly 2013 of the Swiss Group
Future of Design 2013 – Report
IABSE Membership Statement on January 1, 2014
Calendar of Events
IABSE Members’ Business Cards
IABSE Individual Membership Application Form
*Peer-reviewed papers

Front Cover:
Talavera de la Reina Cable-Stayed Bridge, Spain (Photocredits: Carlos Hormigos, Estudio AIA), See article on Pg. 127.

Structural Engineering International 1/2014
Structural Engineering International

International Association for Bridge and Structural Engineering

SEI Structural Engineering International (SEI) is the leading journal of structural engineering dealing with all types of structures and materials. Articles are written by practicing engineers and academia from around the world, and reflect the highest standards. All articles are reviewed by the SEI Editorial Board, with collaboration from over 250 experts and 28 correspondents. Scientific papers that have undergone a detailed peer-review by independent experts and demonstrate a significant contribution to the state of structural engineering knowledge are marked by the Peer Review stamp. To recognise contributions of the highest quality, an Outstanding Paper Award is presented each year. SEI is the quarterly journal of the International Association for Bridge and Structural Engineering (IABSE).

Aims and Scope: Structural Engineering International (SEI) publishes technical reports and scientific papers with a focus on structural engineering, to bridge the gap between professionals and academics. SEI is a journal with a mix of articles ranging from practical to scientific. SEI publishes articles on recent structures, developments in practice and research. Articles in SEI consider all types of structures, bridges, buildings, offshore structures, etc., constructed from all types of building materials: concrete, steel, composites, timber, fibre reinforced polymers, glass, etc. Articles in SEI also deal with the sustainability of structures and a broad range of structural engineering practice from design to construction to maintenance and monitoring, and finally to the reuse or demolition of structures.

SEI Editorial Board

Ann Schumacher, dep Ingenieurs & Planer, Switzerland (Chair)
Guido Morgenthal, Bauhaus-Universität Weimar, Germany (Vice Chair)
Stathis Bousias, University of Patras, Greece
Andrea Frangi, ETH Zurich, Switzerland
Dongzhou Huang, Atkins, United States
Adam Lubell, Read Jones Christofferson Ltd., Canada

Ana Mandic Ivankovic, University of Zagreb, Croatia
Tina Vejrum*, COWI A/S, Denmark
Scott Walbridge*, University of Waterloo, Canada
Dong Xu, Tongji University, China
Takashi Yamaguchi, Osaka City University, Japan

*nominated

SEI Advisory Board

USA: John E. Breen; USA: Wei-Fah Chen; Japan: Yozo Fujino; Denmark: Niels J. Gimsing; UK: Peter R. Head; Switzerland: Manfred A. Hirt; UK: David A. Nethercot; New Zealand: M.J. Nigel Priestley; Germany: Jörg Schlaich; Canada Peter R. Taylor; France: Michel Virloogeux; The Netherlands: Joost C. Wahrean; China: Hai-Fan Xiang

SEI Correspondents

Australia: D. Morris; Brazil: M. Schole; Canada: J. Jiang; China: Z. Sun; Denmark: M. Braestrup; Egypt: F. Saad; Finland: M.-K. Soderqvist; France: B. Godart; Germany: U. Kuhlmann; Greece: C. Gantes; Hungary: L. Dunai; India: V. Kumar; Italy: G. Bigongiari L. Ceriolo; Japan: K. Fujita; Korea: H.-K. Kim; Norway: L. Toverud; Poland: W. Radomski; Portugal: E. Caelen; Russia: S. V. Mozalev; South Africa: J. Wium; Spain: J. F. J. Alonso; Sweden: H. Sundquist; Thailand: E Limsuwun; The Netherlands: A. de Boer; UK: B. Duguid; USA: J. G. Burns; D. Frangopol

Publications Manager: Brindarica Bose, IABSE
Advertising Enquiries: Sisse Niggeler, IBASE
Information on SEI: www.iabse.org/sei
Author Information: Submissions for possible publication on all relevant topics are always welcome and must meet the requirements found on the website.

Publisher
IBASE
c/o ETH Zurich
8093 Zurich, Switzerland
Tel: 41-44-633-2647; Fax: 41-44-633-1241
secretariat@iabse.org; www.iabse.org

IABSE: The mission of IABSE is to promote the exchange of knowledge and to advance the practice of structural engineering worldwide in the service of the profession and society. IABSE organises conferences and symposia, publishes journals and reports, and also presents awards to recognise outstanding achievements in research and practice that advance the profession of structural engineering.

Abstracting and Indexing: This publication is abstracted in Web of Science®, Science Citation Index Expanded (SciSearch); Journal Citation Reports/Science Edition; Current Contents®/Engineering, Computing and Technology; Cambridge Scientific Abstracts under CSA Civil Engineering Abstracts; Emerald Abstracts; Construction and Building Abstracts (CBA); CAB Abstracts; INSPEC; and is included in EBSCOhost and SwetsWise Online Content.

Copyrights: © IABSE. All Rights Reserved. For SEI content photocopying, electronic usage in USA, contact Copyright Clearance Centre (CCC) at www.copyright.com. For rest of the world contact IABSE at: secretariat@iabse.org

Structural Engineering International 1/2014

Published: Quarterly 1 Feb., 1 May, 1 Aug., 1 Nov.
Subscription 2014
Included in IABSE Membership.
220 CHF: Individual Subscription
630 CHF: Institutional Subscription
Available through subscription agencies.
ISSN 1016-8664, E-ISSN 1683-0350
Copyright © IABSE. All rights reserved. Opinions and positions expressed in signed articles are those of the authors and are not necessarily those of Structural Engineering International or IABSE.
Viaduct over River Ulla: An Outstanding Composite (Steel and Concrete) High-Speed Railway Viaduct

Francisco Millanac Mato, PhD, Civil Eng., President, IDEAM S.A., Madrid, Spain; Prof., University Politécnica de Madrid, Madrid, Spain; Miguel Ortega Cornejo, M.Sc., Civil Eng., Engineering Director, IDEAM S.A., Madrid, Spain; Prof., University “Europea de Madrid”, Madrid, Spain; Luis Matute Rubio, M.Sc. Civil Eng., General Manager, IDEAM S.A., Madrid, Spain; Prof., University “Europea de Madrid”, Madrid, Spain. Contact: miguel.ortega@ideam.es
DOI: 10.2749/101686614X13830788506279

Abstract

The viaduct over River Ulla is located in the Atlantic High Speed Railway Line between A Coruña and Pontevedra, in the northwest of Spain. Its location, close to the firth of Ulla, in a landscape of outstanding natural beauty and strong environmental constraints, was the object of a tender among the most renowned Spanish structural specialists.

The solution chosen was a 1620 m long viaduct, with three main spans of 225 + 240 + 225 m and several approaching spans of 120 m length each, which meant a main span being about 20% longer than the Nantenbach bridge in Germany, the current world record in High Speed Railway composite steel and concrete truss girder beam bridges.

The main spans have been designed with a double composite steel and concrete truss deck, with double composite action in hogging zones, and a total depth ranging from 9,15 m at the mid-span section to 17,90 m at the section over the piers. The adjacent spans that give access to the depth-varying main ones have been designed with constant depth.

This article describes the structural conception of the bridge and the three different constructive processes that had to be used due to the access and environmental restrictions.

Keywords: high-speed railway bridge; double composite action (steel–concrete); truss; launching; lifting; self-equilibrated cantilevers.

Introduction

“Arroyo las Piedras” viaduct, finished in 2005, was the first composite steel and concrete bridge of the Spanish High Speed Railway Lines (HSRL). Its typical span (63,50 m) was slightly longer than that of the Oregon Viaduct (63 m), located at the French Mediterranean High Speed Railway Line, which was the longest composite steel and concrete span for this typology until that moment.

Several composite steel and concrete solutions have been constructed in the Spanish HSRL ever since. The details in Ref. [2] discuss some of the most remarkable projects designed by the authors with composite steel and concrete solutions.

This article focuses on viaduct over River Ulla, an outstanding composite steel and concrete solution for a bridge located in an unique landscape.

A Unique Solution for a Unique Undertaking

Viaduct over River Ulla constitutes the most important intervention in the High Speed Atlantic Railway Line between A Coruña and Pontevedra, in Galicia, in the northwest of Spain.

Its location, close to the firth of Ulla, near the Atlantic Ocean shore and in a landscape of outstanding natural beauty and strong environmental limitations, was the object of a tender among the most renowned Spanish structural specialists. The chosen alternative solution is described in this paper, and it will be finished in the first semester of 2014.

The project restrictions focused on the following aspects:

- The outstanding nature of the project required serious consideration of the aesthetic qualities and the integration of the viaduct with the landscape.
- The reduction in the number of piers within the water course, considering the natural limits of HSR bridges, minimising the impact on the marshes and riversides.
- The erection procedures, being suitable to the work scales, shall be kept as independent as possible of the river watercourse, to avoid environmental damage as much as possible.
- Visual transparency and minimal bridge interference with the surrounding landscape.

All these determining factors led the solution to a composite steel-concrete haunch truss, with double composite
The four central piers, with elegant architectural shapes, are longitudinally connected to the truss deck creating longitudinal frames that lend the required stiffness to the three central spans (Fig. 2) to withstand the strains that arise from loads acting on alternate spans within the stringent deformation limitations in High Speed Railway (HSR) bridges.

The two lateral piers of the four central piers (Fig. 3) were designed with a lighter cross section consisting of two separate concrete shafts monolithically connected to the deck and to the foundation. This lightening allowed preserving some degree of stiffness against alternate loads, while achieving the necessary flexibility to permit the temperature and shrinkage-imposed displacements.

The design of the viaduct, preserving the structural orthodoxy, has placed special care on the integration of shapes and geometry between the concrete piers and the steel truss of the deck. The smooth depth variation along the deck, with an upward concavity (Figs. 1 and 2), confers a serene visual integration over the course of River Ulla. The colour choice, pearly grey for concrete and green for the truss, enhances this effect.

Structural Concept

The deck was designed as a depth-varying truss in the five main spans (Figs. 1 and 2), ranging from 8,50 to 17,25 m and as a constant depth truss (8,50 m) in the approaching spans.

Structure Overview

The resulting viaduct is 1620 m long with a span distribution of 50 + 80 + 3 × 120 + 225 + 240 + 225 + 3 × 120 + 80 m (Fig. 4).

The main spans are resolved with a double truss depth-varying deck, with a steel depth under the upper concrete slab ranging from 8,5 m at the midspan (left cross section of Fig. 5) to 17,25 m at the section over the piers (right cross section of Fig. 5). The trusses, which are modulated in 15 m long segments, are transversely separated by 6 m, measured between the upper flange midpoints of the upper chords, and show a 1H/17,5V outward slope.

The lateral adjacent spans have been designed with 8,5 m constant depth (left cross section of Fig. 5).

The cross section of both the upper and the lower chords of the steel truss is 0,80 m wide parallelogram-shaped girders. The upper chord is 1,00 m deep while the lower chord is 1,20 m deep. Diagonal members are also parallelogram shaped, with main dimensions 0,80 m wide and 1,00 m deep.

The upper chords have a boxed beam welded to their upper flanges that is embedded in the concrete slab and lodges the connection, allowing a shear transference closer to the centre of gravity of the composite steel and concrete upper member and avoiding the appearance of local forces and moments in the upper joints.

The steel quality is S-355-J2+N and K2+N for the approach spans and S-460-M and ML (according to the terminology in Ref. [4]) for the three main central spans.

The upper cast in place slab is made of C35/45 concrete (0,46 m depth at the midpoint and 0,25 m at the edges) and placed directly over the steel upper chord, configuring a composite steel and concrete cross section structure.

Along the hogging zones near piers, a C50/60 concrete slab is connected to the bottom steel chords (see right cross section of Fig. 5), allowing a double composite action (steel and concrete) strength mechanism. The thickness of this lower slab ranges from 0,30 to 1,10 m.

Along the sagging zones, the deck’s lower face is closed visually using precast concrete plates with no structural role but to create a path to allow inspection and maintenance.
The central and lateral piers of the viaduct show a well-differentiated geometry and structural response. The four central main piers (from P-5 to P-8) are monolithically connected to the deck, configuring a longitudinal frame that increases the stiffness of the structure and enhances its behaviour regarding horizontal forces (Figs. 1 and 3). The stiffness of these piers has been optimised to restrain deck rotations, to control the deflection of the three main central spans and to reduce the bending moments transmitted to the foundations.

This way, piers P-5 and P-8 at the sides of the 225 m spans (Fig. 3) have been designed with two detached shafts from base to head, to avoid the excessive bending moments arising from the decompensation of a 225 m span next to a 120 m span, and those produced by the temperature and shrinkage displacements, both of them greater than in central piers due to their further distance to the neutral displacement point.

Besides, the piers of the side spans P-1 to P-4 and P-9 to P-11 have a more...
conventional design with a hollowed box girder cross section varying in depth both transversally and longitudinally.

The lateral piers and both abutments are crowned with two spherical bearings, one of them totally free and the other transversally restrained. All the bearings are disposed with the horizontal sliding surface, except the one of the A1 abutment, which are disposed following the longitudinal deck slope (~1.8%), to avoid undesired vertical displacements on the railway track. At the A2 abutment, due to the weak slope, the sliding surface is kept horizontal.

The foundation of the piers is supported by the existing granite substratum by direct foundation, except piers P-5 and P-6 where the alluvial deposit thickness prevents the use of footings and forces of profound foundations (Fig. 6). The biggest one is the P-6 foundation with 56 piles of 1.5 m diameter and a reinforced concrete pile cap of 34.5 × 30 × 5.5 m².

Constructive Procedure

The procedure chosen to construct the viaduct shall conjugate minimal river affliction (always reversible) and erection procedure suitable to the bridge magnitude.

The foundations of piers P-5, P-6 and P-7 are located on the river (Fig. 7), and they are being built with a huge double enclosing sheet pilling circular wall (the exterior one has a diameter of 68 m and the interior one of 48 m) to allow the drain construction of the piles and the pile cap in P-5 and P-6, or the shallow foundation of pier P-7.

For accessing the foundation of the three piers located on the river, a provisional steel access bridge has been built, supported in temporary driven piles placed 6 m apart. The construction of this provisional access was carried out regarding the natural course of the river avoiding any possible contamination or effect on the protected local fauna. This simplifies the works with road access from both sides of the river, avoiding the need of boat or special resources.

Once the foundations have been completed, the piers are erected by means of a climbing formwork. When the shaft of piers P-5 to P-8 is finished, the zero steel segment (with "W" shape) was assembled in horizontal position at the bottom of the piers, and once truss segments on both sides are finished, they were lifted (Fig. 8a and b) and fixed in their position on site over the piers (Fig. 3). These huge segments weigh about 375 t each and their dimensions are 35 m length per 17.5 m depth.

With the concrete part of the head of the piers completed, the steel truss of the central spans with variable depth are simultaneously erected by a successive cantilever method, from the pier section to the closing segment at midspan (Fig. 9). This method ensures independent work at the bridge from the marshes, river and surrounding vegetation.

The welding of the different elements—nodes, chords, diagonals and bracings—that constitute one segment is done at one of the three steel workshops located near the edges of the river. Once the segment is completely finished, it is transported to the pier base in modules that measure 15 m long by means of a special platform with multiple axes accessing.

Once the segment has arrived to the pier base, a gantry crane picks up the module close to the pier shaft, translating it to its final position and lifting it to be welded in place. This procedure began in July 2013 and presumably will be finished before spring 2014.

The constant depth spans of both sides are built by different procedures due to the different inferior crossing conditions. The side near abutment A1 has several local road crossings and a local railway crossing, hence the constructive process on this side is by launching in three different phases (Fig. 10a and b). For want of enough free space behind the bridge to prepare a launching yard as it would be conventional, due to a tunnel very rear to the end of the abutment, the launching yard has been established between abutment A1 and pier 2 (50 + 80 m), over temporary props.

Each 120 m span is assembled on site over the launching yard by welding the segments over temporary supports, and once finished, it is launched, as shown in Fig. 10.

The second launch operation moves two complete spans of 120 + 120 m length, and finally, the lateral side spans 1 and 2 (50 + 80 m) are welded on site over the temporary props by erecting each segment: with the use of cranes.

The four lateral approaching spans near abutment A1 were finished in winter 2013–2014.

The approaching spans on the side of abutment A2 do not have the same...
Fig. 10: (a) Scheme of the constructive procedure by launching in three phases and (b) picture of the current state of the works in December 2013 (launching phase III).

Fig. 11: Scheme of the lifting procedure of the approaching spans near abutment 2

restrictions as the ones on the side of abutment A1. As there are no inferior interferences, a complete span-lifting procedure has been designed (Fig. 11). The complete span are welded on site by assembling each segment propped on the ground and finally each span will be vertically lifted, as shown in Fig. 11 and welded to the previous one giving continuity to them. The approximate weight of the 120 m spans is 1200 t and for the 80 m spans is 800 t.

Once the assembly of the steel work has been completed, the lower precast concrete plates are placed and the subsequent lower slab concrete casting is done. The next stage is the simultaneous and controlled downward displacement of 0.25 m of the deck at piers P-4 and P-9 sections, so as to reduce the bending moments of the rest of the dead loads and live loads on piers P-5 and P-8 produced by the decompensation of the span length at each side of
these piers, 120 m on one side and 225 m on the other.

The upper concrete slab is placed over precast concrete plates bridging the space between steel upper chords of both trusses. The lateral cantilever part of the slab is cast using a movable formwork.

Finally, the precinct sheet piles of piers P-5, P-6 and P-7, as well as the provisional steel temporary access bridge, are removed and the corresponding corrective measures are taken. The current state of the works (December 2013) is shown in Figure 12a and b.

Conclusions

The location of viaduct over River Ulla in a very beautiful landscape and with strong environmental restrictions obliged the design of a composite steel-concrete truss solution, with 1620 m length and three outstanding main spans of 225 + 240 + 225 m length.

The large dimensions of the segments of the bridge and the difficulty of construction associated with the various restrictions have necessitated the design of three different and complex constructive procedures, described in detail in the article.

The main central spans are built by incremental equilibrated steel cantilevers, while the lateral approaching spans, with 120 m of typical length, are constructed by vertical complete lifting in one side and by incremental launching and using temporary props on the other.

The bridge will be completed before summer of 2014 to become the world record in its typology, with the main span of 240 m, about 20% longer than the Nantenbach bridge over River Main in Germany.

References

SEI Data Block

Owner:
Railway General Direction, Spanish Ministry of Public Works ("Fomento" Ministry)

Designers:
IDEAM S.A., Madrid, Spain

Contractor:
UTE rio Ulla, Dragados-Teesa

Structural steel (t):
19 300

In situ concrete

(upper deck slab) (m³):
8620

In situ concrete

(bottom deck slab) (m³):
2800

Passive steel (bridge deck) (t):
2900

Total cost (EUR millions):
95,6

Service date:
Summer 2014
Mr. Miguel Ortega Cornejo
Engineering Director
IDEAM
C/Velázquez 41. 1ºA Madrid 28001
Madrid, Madrid 28001
Spain

Zurich, Jan. 30, 2014

Structural Engineering International (SEI), February 2014 issue
Recent Structures and Research in Spain

Dear Mr. Miguel Ortega Cornejo,

On behalf of the SEI Editorial Board, guest editors and myself, I would like to thank you for your excellent contribution to SEI. We hope that you are satisfied with the results and that you will consider publishing in Structural Engineering International again in the future. Please find enclosed complimentary copies of the journal as recognition of your work and involvement.

SEI will be delivered to around 4,000 IABSE Members in hard copy (print format) and to hundreds of worldwide Universities with Institutional Subscription to SEI. IABSE Members as well as SEI Subscribers have access to over 1500 SEI articles online. Your paper with the printed DOI number will soon be available online. SEI is indexed in Web of Science; Science Citation Index Expanded (SciSearch) and other leading indexing services. Once again, many thanks for this important contribution and I look forward to working with you on future papers. For comments on the journal please write to: bose@iabse.org. We value your opinion and feedback. All SEI papers published in 2014 (including yours) will be evaluated for the IABSE Outstanding Paper Award 2014. We will highly appreciate if you recommend SEI to your Librarian for a 2014 Institutional Subscription. Subscription Form is attached.

Authors are encouraged to cite their SEI paper in future publications. Thank you.

Sincerely yours,

Brindarica Bose
IABSE, Publications Manager

SEI Institutional Subscription 2014, Benefits include: Entire Institution gets 365 days online access to all SEI issues printed since 1991 and 2 Print copies, for CHF 630/yr. Individual Subscription to SEI is also available at CHF 220/yr.

Need extra SEI copies? For extra copies (more than 15), place an order for a reduced fee of 10 CHF per copy + mailing costs (e-mail your order at: bose@iabse.org).